The Influence of Word Vectorization for Kawi Language to Indonesian Language Neural Machine Translation

نویسندگان

چکیده

People relatively use machine translation to learn any textual knowledge beyond their native language. There is already robust such as Google translate. However, the language list has only covered high resource English, France, etc., but not for Kawi Language one of local languages used in Bali's old works literature. Therefore, it necessary study development from more active user Indonesian make easier learning access young learner. The research developed neural (NMT) using recurrent network (RNN) based models and analyzed influence word vectorization Word2Vec performance on BLEU scores. result shows that indeed significantly increases NMT performance, Long-Short Term Memory (LSTM) with attention mechanism highest scores equal 20.86. still could achieve par those human experts translation. On other hand, this initial be reference future NMT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of Indonesian Language for Interlingual Machine-Translation System

This paper presents BlAS (Bahasa Indonesia Analyzer System), an analysis systemfor lndonesian language suitable for multilingual machine translation system. BIAS is developed with a motivation to contribute to on-going cooperative research project in machine translation between Indonesia andotherAsian countries.In addition,it mayserve tofosterNLPresearchinIndonesia. It startwith an overviewofva...

متن کامل

Deep Neural Language Models for Machine Translation

Neural language models (NLMs) have been able to improve machine translation (MT) thanks to their ability to generalize well to long contexts. Despite recent successes of deep neural networks in speech and vision, the general practice in MT is to incorporate NLMs with only one or two hidden layers and there have not been clear results on whether having more layers helps. In this paper, we demons...

متن کامل

Pragmatic Neural Language Modelling in Machine Translation

This paper presents an in-depth investigation on integrating neural language models in translation systems. Scaling neural language models is a difficult task, but crucial for real-world applications. This paper evaluates the impact on end-to-end MT quality of both new and existing scaling techniques. We show when explicitly normalising neural models is necessary and what optimisation tricks on...

متن کامل

Word-reordering for Statistical Machine Translation Using Trigram Language Model

In this paper we study the word-reordering problem in the decoding part of statistical machine translation, but independently from the target language generating process. In this model, a permuted sentence is given and the goal is to recover the correct order. We introduce a greedy algorithm called Local-(k, l)-Step, and show that it performs better than the DP-based algorithm. Our word-reorder...

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JITeCS (Journal of Information Technology and Computer Science)

سال: 2022

ISSN: ['2540-9433', '2540-9824']

DOI: https://doi.org/10.25126/jitecs.202271387